1.有甲、乙两汽车站,从甲站到乙站与从乙站到甲站每隔10分同时各发车一辆,且都是1小时到达目的地。问某旅客乘车从甲站到乙站,在途中可看到几辆从乙站开往甲站的汽车?(
)
A. 9 B. 13 C. 14 D. 11
2.甲、乙、丙、丁、戊五个工人,甲5天的工作量等于乙6天的工作量,乙8天的工作量等于丙10天的工作量,丙的工作效率等于丁的3/4,丁与戊的工作能力之比是8∶5,现在甲、丙两人合作15天完成的某件工程,由戊一人独做,需要多少天完成?()
A. 50 B. 45 C. 37 D. 25
3.仓库运来含水量为90%的一种水果100千克,一星期后再测发现含水量降低了,变为80%,现在这批水果的总重量是多少千克?( )
A. 90 B. 60 C. 50 D. 40
4.甲、乙、丙三人沿湖边散步,同时从湖边一固定点出发。甲按顺时针方向行走,乙与丙按逆时针方向行走,甲第一次遇到乙后 1又1/4 分钟遇到丙.再过
3又3/4分钟第二次遇到乙。 已知乙的速度是甲的 2/3,湖的周长为600米.则丙的速度为( )
A.24米/分 B. 25米/分 C.26米/分 D.27米/分
5.21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
A.7 B.8 C.9 D.10
1.D。【解析】刚出发时,途中已经有5辆汽车了,同时,要1小时到达目的地=>又会发出6辆汽车=>总共有5+6=11辆。
2.B。【解析】令甲工作量效率为a,则乙效率为(5a)/6,丙的效率为(2a)/3,丁的工作效率为(8a)/9,戊的工作效率为(5a)/9=>[a+(2a)/3]×15=[(5a)/9]×x=>x=45=>选B。
3.C。【解析】一星期前,水有100×90%=90千克,非水有=100-90=10,令一星期后,水重x千克,且非水不分不变=>此时总重为x+10=>x/(x+10)=0.8=>x=40=>此时总重为10+40=50。
4.A。【解析】以甲乙第一次相遇为顶点,甲乙再次再遇用了1又1/4+3又3/4=5分钟.,又知湖的周长为600米,得到:甲+乙的速度合为120分/秒.,已知乙的速度是甲的2/3.得:甲的速度为72分/秒.甲第一次遇到乙后1又1/4
分钟钟遇到丙,可知甲用了(5+1又1/4 分钟分与丙相遇,略做计算可知,丙的速度为24分/秒。
5.A。【解析】5个数相加为21--奇数=>5个数中,或3奇2偶、或5个奇数,又[21/5]=4,即构成4,4,4,4,5的形式,当为5个奇数时=>4,4,4,4,5中5为奇数=>只要把4,4,4,4拆分成奇数,即可。但奇数列1,3,5,7,9.....中4个数之和最小为16(1+3+5+7)=4+4+4+4,又题目要求每个数都不相同=>5个奇数的情况不存在。当为3奇2偶时=>4,4,4,4,5中已有一个奇数=>只要把4,4,4,4拆分成2奇2偶就可以了=>最简单的拆分为(也是保证每个数都尽量的小的拆分方法),把第一项减1,同时,第二项加1=>3,5,4,4,又因为要满足元素不相同的要求,再不改变2奇2偶个格局的前提下,最简单的拆分就是把第二项加2,同时第三项减2(这样拆分,也会保证所拆得的数尽量最小)=>3,7,2,4=>此时构成2,3,4,5,7=>选A。