事业单位招聘考试论坛

 找回密码
 立即注册
查看: 106|回复: 0

2013江西农信社招聘考试模拟试题五

[复制链接]

21万

主题

21万

帖子

65万

积分

论坛元老

Rank: 8Rank: 8

积分
652786
发表于 2017-6-27 22:40:17 | 显示全部楼层 |阅读模式
1.11,14,20,29,41,( )
    A.45 B.49 C.56 D.72
    2.8,8,12,24,60,( )
    A.90 B.120 C.180 D.240
    3.8,9,16,17,32,25,64,( )
    A.60 B.55 C.48 D.33
    4.1.16,8.25,27.36,64.49,( )
    A.65.25 B.125.64 C.125.81 D.125.01
    5.4,10,8,17,12,( ),16,31
    A.14 B.15 C.23 D.24
    6.24689-1728-2272的值为( )
    A.689 B.713 C.521 D.479
    7.王杰要在一个长50米,宽30米的长方形水池旁植树,每隔10米植1棵,并且四个角都植树。一共可以植( )棵。
    A.14 B.15
    C.16 D.17
    8.一个水池有两个排水管甲和乙,一个进水管丙。若同时开放甲、丙两管,20小时可将满池水排空;若同时开放乙、丙两水管,30小时可将满池水排空;若单独开丙管,60小时可将空池注满。若同时打开甲、乙、丙三水管,要排空水池中的满池水,需多少小时?(  )
    A.7 B.8
    C.9 D.10
    9.A、B两地相距380千米。甲、乙两辆汽车同时从两地相向开出,原计划甲每小时行36千米,乙汽车每小时行40千米,但开车时,甲车改变了速度,也以每小时40千米速度行驶。这样相遇时乙车比原计划少走了多少千米?(  )
    A.9.8 B.11
    C.10 D.10.5
    10.3时时,时针和分针成直角。什么时刻时针和分针第一次重合?( )
    A.3时15 11/13分 B.3时16 4/11分
    C.3时14 9/10分 D.3时11 7/10分
    11.林文前年买了8000元的国家建设债券,定期3年。到期他取回本金和利息一共10284.8元。这种建设债券的年利率是多少?( )
    A.9.52% B.9.6%
    C.8.4% D.9.25%
    12.人民路小学三、四、五年级的同学乘汽车去春游。如果每车坐45人,有10人不能坐车;如果每车多坐5人,又多出1辆汽车,一共有多少辆汽车?有多少名同学去春游?(  )
    A.10辆汽车,450名同学 B.11辆汽车,450名同学
    C.12辆汽车,550名同学 D.13辆汽车,550名同学
    13.2003年儿童节是星期日,那么到北京奥运会的那一年的元旦是星期几?( )
    A.星期一 B.星期二
    C.星期三 D.星期四
    14.一只船发现漏水时,已经进了一些水,水匀速进入船内,如果10人淘水,3小时淘完;如5人淘水8小时淘完。如果要求2小时淘完,要安排多少人淘水?(  )
    A.11 B.12
    C.13 D.14
    15.在一个大笼子里关了一些鸡和一些兔子。数它们的头,一共有36个;数它们的腿一共有100条。问鸡和兔各多少只?( )
    A.鸡21只,兔13只 B.鸡23只,兔16只
    C.鸡22只,兔14只 D.鸡23只,兔15只
    参考答案:
    1.C【解析】经过仔细观察与简单的计算后可以看出,本题中的相邻两项之差构成一个等差数列3,6,9,12,…,相差数为3。根据这一规律,推算出最后两项之差应为15,所以选C。此种题型中相领项并不是一个简单的等差数列,但其仍符合等差数列的一些特征,有着明显的规律性,所以可将其看作是等差数列的变式。
    2.C【解析】虽然此题中相邻项的商并不是一个常数,但它们是按照一定规律排列的,具体为:1,1.5,2,2.5,3,因此答案应为60×3=180,像这种试题我们称之为等比数列的变式。
    3.D【解析】这个数列也是一个典型的双重数列,奇数列为等比数列,偶数项为等差数列a+8,得出这个结论后,此题就完全是一道简单的计算题了。
    4.B【解析】整数部分分别是1,2,3,4的立方,小数部分分别是4、5、6、7的平方,答案为B。
    5.D【解析】初见这个数列,很难发现数列的规律。找不到相邻数字间的通项。但是经过对整个的浏览后可以发现这个数列呈现出波动的规律,奇数项和偶数项分别按照自己的规律向前延续,这就是双重数列的本质表现。分别对奇、偶数列进行计算后得出奇数列的通项为a+4,偶数列的通项为a+7,均为较简单的等差数列。
    6.A【解析】先用心算将两个减数相加,1728+2272=4000。然后再从被减数中减去减数之和,即4689-4000=689。
    7.C【解析】在长方形四周植树,植树的棵数段数,不要加1,因为封闭的路线首尾相接,重合了。
    长方形的周长:(50+30)×2=160(米);一共可以植树:160÷10=16(棵)。
    8.D【解析】由于题中告诉我们三个条件:①同时开启排水管甲和进水丙,用20小时可将满池水排空,由此可知,甲水管工作20小时与丙水管工作20小时的工作量之差恰好是满池水。②已知同时开启排水管乙和进水管丙,用30小时可将满池水排空,由此可知乙、丙两水管同时工作30小时的工作量之差也恰好是满池水。③已知丙水管工作60小时,可将空池注满水,故其工作效率为1/60。利用上述三个条件我们可以求得甲、乙两水管的工作效率,进而计算同时开启甲、乙、丙三水管将池水排空所用的时间。由条件①和条件②计算甲的工作效率为:1+1/60×20÷20=1/15;由条件②和条件③计算乙的工作效率:1+1/60×30÷30=1/20;所以同时开启甲、乙、丙三水管将满池水排空所用的时间为:1÷1/15+1/20-1/60=1÷1/10=10(时)。
    9.C【解析】根据“路程÷速度和=相遇时间”这个数量关系式先求出甲、乙两车计划相遇时间与实际时间,再求出乙计划与实际走的路程,最后求出二者之差。380÷(40+40)=4.75(时),380÷(40+36)=5(时);40×(5-4.75)=10(千米)。
    10.B【解析】分针在钟面上走1圈,时针只前进“1个字”,即分针走60分(钟面上为60格),时针只走5个分格。以分针前进的速度为单位“1”,时针前进的速度则只为“1/12”。3时时,时针与分针之前的“差距”是15格(每格代表1分钟)。分针前进时,时针也在缓慢地前进,分针要花多少时间(分钟)才可以“追上”这15格呢?列式为:15÷1-1/12=15÷11/12=16  4/11(分)。
    11.A【解析】求利息的公式:利息=本金×利率×时间,可得出:利率=利息÷时间÷本金。而他3年所得的利息是:10284.8-8000=2284.8(元);这样即可求出这债券的年利率是多少。(10284.8-8000)÷3÷8000=2284.8÷3÷8000=761.6÷8000=0.0952=9.52%
    12.C【解析】每车多坐5人,多出1辆汽车,说明每车多坐5人,还差(45+5)人,也就是如果每车坐45人,剩余10人不能坐车,如果每车坐(45+5)人,又少了(45+5)人,两次乘车的人数相差了(45+5+10)人,是因为每辆车上多坐了5人。那么,(45++5+10)里有几个5,就有几辆汽车。因此,可求出汽车的辆数。
    汽车数量为(45+5+10)÷5=60÷5=12(辆);去春游的同学总数为45×12+10=550(名)。
    13.B【解析】儿童节是6月1日,北京奥运会是2008年。如果以2003年6月1日为第一天起到2008年元旦是第几天呢?2003年中有30+31+31+30+31+30+31=214(天),2004年(闰年)366天,2005年、2006年、2007年都是平年各有365天,2008年元旦1天,所以2008年元旦是第214+366+365×3+1=1676(天)。每7天为一个星期。就能求出2008年元旦是星期几。214+366+365×3+1=1676;1676÷7=239……3;与第3天相同是星期二。
    14.D【解析】这类问题,都有它共同的特点,即总水量随漏水的延长而增加。所以总水量是个变量。而单位时间内漏进船的水的增长量是不变的。船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量。对于这个问题我们换一个角度进行分析。如果设每个人每小时的淘水量为“1个单位”。则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30。船内原有水量与8小时漏水量之和为1×5×8=40。每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量。3小时漏进水量相当于3×2=6人1小时淘水量。所以船内原有水量为30-(2×3)=24。如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。
    15.C【解析】假设36只全是鸡,就应有72条腿(2×36),这就比题目所说的“100条腿”少了28条腿。为什么“腿”会少呢?很显然,是我们把四条腿的兔子当成了两条腿的鸡。由此即可求出兔子的只数,列式为:(100-2×36)÷(4-2)=28÷2=14(只);鸡的只数为:36-14=22(只)。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-7-29 09:03 , Processed in 0.062716 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表